Pandas Operations
NaN Operations
Drop Rows with all Null Values
df.dropna(how = "all", inplace = True)
Drop Specific Rows where Columns have Null Values
df.dropna(subset = ['column1', 'column2']
Fill Null with Defalt Values per Column
df['column'].fillna(0, inplace=True)
Type Operations
Change Column Type to INT
df['column'] = df['column'].astype("int")
Change Column Type to Category ( Saves Mem on Big Data Sets )
df['column'] = df['column'].astpe("category")
Sort Operations
Sort by Single Column
df.sort_values("column1", ascending = False)
Sort by Multiple Columns
df.sort_values(["Team", "Name"], ascending = [True, False], inplace = True)
Sort by Index
df.sort_index(ascending = False, inplace = True)
Add Rank to Column
df["Salary Rank"] = df["Salary"].rank(ascending = False).astype("int")